skip to main content


Search for: All records

Creators/Authors contains: "Contreras-Moreira, Bruno"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Natural populations are characterized by abundant genetic diversity driven by a range of different types of mutation. The tractability of sequencing complete genomes has allowed new insights into the variable composition of genomes, summarized as a species pan‐genome. These analyses demonstrate that many genes are absent from the first reference genomes, whose analysis dominated the initial years of the genomic era. Our field now turns towards understanding the functional consequence of these highly variable genomes. Here, we analysed weighted gene coexpression networks from leaf transcriptome data for drought response in the purple false bromeBrachypodium distachyonand the differential expression of genes putatively involved in adaptation to this stressor. We specifically asked whether genes with variable “occupancy” in the pan‐genome – genes which are either present in all studied genotypes or missing in some genotypes – show different distributions among coexpression modules. Coexpression analysis united genes expressed in drought‐stressed plants into nine modules covering 72 hub genes (87 hub isoforms), and genes expressed under controlled water conditions into 13 modules, covering 190 hub genes (251 hub isoforms). We find that low occupancy pan‐genes are under‐represented among several modules, while other modules are over‐enriched for low‐occupancy pan‐genes. We also provide new insight into the regulation of drought response inB. distachyon, specifically identifying one module with an apparent role in primary metabolism that is strongly responsive to drought. Our work shows the power of integrating pan‐genomic analysis with transcriptomic data using factorial experiments to understand the functional genomics of environmental response.

     
    more » « less
  2. With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them. 
    more » « less
  3. Abstract

    Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.

     
    more » « less